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Abstract-An approach is developed for determining complete solutions for simply supported rectangular
beams composed of a rigid, perfectly-plastic material under the action of distributed surface load. Detailed
solutions are given for loading over a central strip in plane strain, and the solutions exhibit a sharp transition
from failure in bending to failure by local plastic flow at the Prandtl value of the applied pressure. The influence
of axial force is discussed and some complete solutions are developed for bending of simply supported beams
in plane stress. Comparisons are made between the exact values of the collapse pressure and the values given
by beam theory.

1. INTRODUCTION

THE small number of exact or complete solutions to problems within the framework of
the theory of plasticity reflects the difficulties involved, Even in the case of plane strain of
rigid, perfectly-plastic bodies at the state of collapse when the solution can in principle
be obtained from the well developed theory of the slip-line field (see [1,2] for example),
exact solutions are few-especially for problems which involve rigid regions in conjunction
with plastically deforming regions. Consequently many investigations have used the
theorems of limit analysis in order to obtain bounds on the collapse load of a rigid,
perfectly-plastic structure and other investigations employ approximate structural theories
such as beam, plate and shell theories. Further, assessment of the validity of the structural
theory for beams [3-5] and for beams, plates and shells [6] has been made through the use
of limit analysis rather than by means of exact solutions. Although structural theories
and the theorems of limit analysis can give close values for collapse loads, the details of
the stress field and the deformation mode in the plastically deforming region can only be
found from a complete two- or three-dimensional solution.

In the following work we develop a general approach for determining complete solutions
for a rigid, perfectly-plastic beam of rectangular section which is simply supported at its
ends and which is loaded by both a transverse load and by an axial load. In contrast to
engineering beam theory we must specify the end conditions for the beam exactly, and in
general we have taken a uniform distribution of shear stress on the ends although it is
apparent that complete solutions can be derived for other supporting distributions of
shear. Finally we restrict ourselves to plane strain conditions, approximated by a wide

* The work of one of the authors (C. A. Anderson) was carried out under the auspices of the U.S. Atomic
Energy Commission.
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beam, and to plane stress conditions, approximated by a narrow beam; in the latter case
we restrict ourselves to the von Mises yield condition.

In Section 2 we discuss stress fields and associated velocity fields for simply supported
beams in plane strain when the loading applied to the upper surface of the beam is non­
localized in nature. Detailed solutions are presented for the case of loading by uniform
pressure over a central strip of width 2e. where e/h > 1/2, h being the beam thickness. In
this case the velocity field involves plastic flow in a conventional yield hinge with straight
slip-lines inclined at 45° to the horizontal-the stress fields in the upper and lower parts
of the hinge being uniform. The exact value of the collapse pressure is found to be some­
what higher than the value given by beam theory. The solutions for non-localized loading
over a central strip apply as long as the value of the collapse pressure is less than 0·404 (Jo,

(J 0 being the tensile yield stress. When the pressure is uniform over the whole of the beam
this restriction merely requires that the thickness to length ratio h/21 be less than 004 15.
When h/21 = 0·415 the collapse pressure is 17 ~~ greater than the beam theory value.

Section 3 again considers in detail the case when the loading is uniform over a central
strip of width 2c but now the loading is localized, e/h < 1/2. In the velocity fields of these

. solutions the usual form of yield hinge does not appear. However plastic stress fields and
associated velocity fields can be constructed from the theory of the slip-line field and
illustrations of two such slip-line fields are given. It is clear from these slip-line fields that
as c/h decreases the transition from failure due to bending to failure due to local plastic
flow occurs suddenly at the Prandtl value (I + ][/2)(J 0 of the applied pressure. where (J 0 is
again the tensile yield stress. This agrees with previous results of the authors, who investi­
gated this transition by approximate means with the aid of the limit analysis theorems [6J,
and obtained close bounds on the collapse pressure. For e/h less than 0·1 h/l approximately,
the collapse pressure is constant at the Prandtl value. In contrast beam theory predicts
a virtually constant total load, which implies very large pressures for small e/h.

In Section 4 we briefly discuss the development of complete solutions when axial force
is present in the problems of Sections 2 and 3. Finally in Section 5 we consider bending
of simply supported beams in plane stress for a material which obeys the von Mises yield
condition. The case of uniform pressure applied over the entire upper surface of the beam
is treated in detail and it is clear that bending by a strip of pressure can be handled in much
the same fashion as non-localized strip loading in plane strain. The exact value of the
collapse pressure is again found to be somewhat higher than the value given by beam
theory, as found previously [5J by the use oflimit analysis.

2. BENDING OF A BEAM IN PLANE STRAIN

We consider a simply supported beam in plane strain of depth h and length 21 which is
at collapse under a distributed pressure q(x) applied over the upper surface of the beam.
When the pressure loading is not highly localized failure will occur in bending with a yield
hinge at the section of maximum moment. (We assume that the maximum moment is
attained at only one section.) The general features of the solution are indicated in Fig. 1.
A fully plastic state in which the axial stress (Jx is compressive extends from the upper
surface of the beam. The slip-line field in this region is determined by the known pressure
distribution q(x) on the upper surface together with the equilibrium equations and the
yield condition for plane strain

(2.1 )
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FIG. I. Simply supported beam under distributed pressure.

the yield strength in simple tension being 0"0 for a Tresca material and J3 0"0/2 for a von
Mises material. When q(x) is non-uniform the slip-lines are not straight. For the lower
portion of the beam the axial stress is tensile and the traction-free lower surface determines
the fully plastic state extending from the lower surface to be simply o"x = 0"0' O"y = rxy = 0;
here the slip-lines are straight lines inclined at 45° to the bottom surface. The plastic
regions meet at a point 0 which we take to be the origin of the (x, y) coordinate system.
For symmetric loading the section x = 0 through 0 is the section of maximum moment
but otherwise the section of maximum moment is close to x = O. The stress distribution
across x = 0 must be such that there is no net axial force on x = 0 and for the portion of
the beam to the right of x = 0 the moment about 0 on x = 0 must balance the moment
about 0 of the applied pressure q(x) and the shear on the end. These conditions will deter­
mine the distance of 0 from the upper surface and also the beam thickness h in terms of I
(or alternatively the collapse value of a loading parameter).

The stress fields in the upper and lower portions ofthe beam can be extended throughout
the beam by introducing lines of stress discontinuity y = f(x) and y = g(x) from 0 to the
corners of the beam as shown in Fig. 1. In the transition region between y = f(x) and
y = g(x) we take the equilibrium stress field

O"x = 0, rxy = r(x), O"y = - yr'(x)+O"(x) (2.2)

which satisfies the condition of zero normal stress and uniform shear stress on the ends
of the beam. The functions r(x) and O"(x) as well as the positions of the lines of stress dis­
continuity are determined by the equilibrium requirements across y = f(x) and y = g(x).
Stress fields of this type have been used in [6].

An admissible velocity field can be associated with the stress field described above.
The plastically deforming region, the yield hinge, consists of the two triangular regions
in the upper and lower portions bounded by the slip-lines from 0 to the upper and lower
surfaces, the C(- and p-lines of Fig. 1. The parts ofthe beam to the left and right of the hinge
remain rigid and perform rigid body rotations of amount n about O. The velocity field
in the hinge is determined from the Geiringer equations for the velocities and the known
normal velocities on the hinge boundaries. The solution described here satisfies the re­
quirements for a complete solution provided that the stress field (2.2) for the region lying
between y = f(x) and y = g(x) does not violate the yield condition (2.1). For conventional
beams the field (2.2) will not violate the yield condition for a wide range of pressure dis­
tributions q(x) and complete solutions will be obtained. Finally we remark that the results
of [7] can be used to show that the stress field in the plastically deforming region, the yield
hinge, will be unique.
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(2.3)

(2.4)

In order to exhibit a solution in detail we now consider the case when the pressure q(x)
is uniform over a central strip of width 2c and zero elsewhere on the upper surface. In
this section we suppose that c/h > 1/2, approximately, and the case of localized loading,
c/h < 1/2, will be treated in the next section. We assume that no normal force acts on the
ends x = ± l of the beam, and for definiteness we assume that the shear on the ends is
uniformly distributed, although it will be apparent that other shear distributions can be
treated.

Referring to Fig. 2, the y-axis is the axis of symmetry and we divide the right-hand
half of the beam into regions I~V separated by stress discontinuities, the curves y = f(x),
y = g(x) and the straight lines AB and AD. The line AD is inclined at an angle (n/4- b)
to the x-axis and angle DAB is a right angle. In region I directly under the loaded portion
of the beam we take initially a state of hydrostatic pressure of amount q and this satisfies
the normal pressure requirement on the upper surface. The pressure q on AD is supplied
by a shaft of uniform compressive stress of amount q directed along AB in region IV.
Initially region V is stress free. It is easily seen that equilibrium across AB and AD is
satisfied. The final stress fields for the region above y = f(x) are obtained by superimposing
a uniform axial compression ax = - a0 on the stress field of regions I, IV and V. Since the
angle b is at our disposal we can select b so that for a given q the field in DAB is at yield.
Then. from (2.1), band q arc related by

q = 2 sin 2b

and the constant state field in region IV is then given by

a x = - X = - I -!q +!q2

ay = _ y = _!q_!q2

r xy = T = !q(1 - !q2)1/2

where we have taken a0 = 1. Finally, as described earlier, in region II we take ax = I,
r xy = ay = 0 and in region III the stress field (2.2).

The value of the collapse pressure q and the distance b of 0 from the upper surface
of the beam are determined from the overall equilibrium of the part x 2:: 0 of the beam.
The requirement ofno net axial force on x = 0 gives b = h/(2 +q) while moment equilibrium
about 0 determines the value of the collapse pressure to be (with a0 = 1)

h
2

{[ h
2 J2}1/2q= +1+ -1.

2c(2l- c) 2c(2l- c)

Since h/l is small for typical beams, we can expand the square root to give

h
2

{ h
2

(h
6

)}q= 1+ +0 .
2c(2l-c) 4c(2l-c) c3[2l-cJ3

(2.5)

(2.6)

The distances of the points D and B of Fig. 2 from the axis of symmetry are denoted
by al and a2 respectively. For the stress fields taken in regions I, II and III, equilibrium
conditions across the stress discontinuity y = f(x) require that

(q+ I)f'(x)-r(x) = 0

r(x)f'(x)+r'(x)f(x)-a(x)-q = 0
(2.7)
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FIG. 2. ::;imply supported beam loaded by a central strip of uniform pressure, c/h ~ c1/h "" 1/2.

and similarly for y = g(x) we need

g'(X)+'t'(X) = 0

't'(x)g'(x)+g(x)'t"(x)-a(x) = O.
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(2.8)

The system of differential equations (2.7) and (2.8) is valid for 0 < x < al and has the
initial conditions f(O) = g(O) = O. Addition of the first equations and subtraction of the
second equations of (2.7) and (2.8) lead to

g(x) = - (I:+- q)f(x)

't'(x)[f(x) - g(x)] = qx

on integration and use of the initial conditions. Substituting for 't'(x) from (2.7) then gives

(2+q)(1 +q)f'(x)f(x) = qx

and a final integration gives

{
q }1/2

f(x) = (1 +q)(2+q) x. (2.9)

From (2.7), (2.8) and (2.9) we find that region III is a constant state region for 0 < x < a 1

with 't'xy = -g'(x), ax = 0, ay = -[g'(xW. The yield condition (2.1) with 0'0 = 1 is there­
fore not violated as long as Ig'l ::; 0·486. This restriction then gives q = 0·404 as the
maximum value of q for which the yield condition (2.1) is not violated in region III,
0< x < a 1 .

For al < x < a2' (2.2) and (2.4) together with the equilibrium requirements across
y = f(x) give

Xf'(x)+T-'t'(x) = 0

['t'(x)- T]f'(x)- Y + f(x)'t"(x)-a(x) = 0
(2.10)

while for equilibrium across y = g(x) equations (2.8) again apply. The functions f(x) and
g(x) are continuous at x = a 1 and the continuity of 't'(x) at x = al then gives the remaining
initial conditions
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from the first equations in (2.8) and (2.10). The shear at x = a l • ,(a l ), can be computed
from the previous results for x < a I and is found to be

r(ad = {q(l +q)/(2+qW I2 .

From (2.8) and (2.10) and the conditions at x = a l it is found that f(x) and g(x) are
determined in the interval a I < X < a2 by

where

Xf(x)+g(x) = -(x-al)T- Yf(a l )

Xf2(X) +g2(X) = (X-al)2y +2(x-adA +B
(2.11)

In a similar fashion the functionsf(x) and g(x) can be determined for x > a2' Without
giving the details we find that

qh
f(x) = {th2_qc(l-xWI2_!2+q

qh
g(x) = -f(x)--.

2+q

(2.12)

The shear at the end x = 1has the correct value r(l) = qc/h and the curves y = f(x) and
y = g(x) pass through the corners of the beam. Finally, the values of al and a2 can be
determined from the preceding results but the calculations are not given here.

We remark that the line of stress discontinuity AB of Fig. 2 can be replaced by a fan
region (of small angle) centered at A such that the stress field changes continuously from
that of region IV to the uniform compressive field of region V. The value of the collapse
pressure given by (2.5) is unaffected by this change, of course, although the positions of
the lines of stress discontinuity, y = f(x) and y = g(x), are altered slightly. Although the
stress discontinuity AB is used here in order to simplify the calculations of this section,
the fan centered at A must be taken for c/h close to 1/2 to ensure that the stress fields change
smoothly into the stress fields of the next section for c/h < 1/2 (approximately).

The stress field discussed here is statically admissible provided that q s 0'404. which
guarantees that region III of Fig. 2 is below yield (the shear is a maximum in the portion
o < x < a l of region III), and provided that c ~ C1 where C1 is the value of c when 0
coincides with O. If () = ()l and q = ql when c = C 1 then C1 is determined from

h I J:
C 1 = ---)cot(4n - u l)'

(2+q,
(2.13)

If we expand the cotangent about ()l = 0 and employ (2.3) we find that cl/h = !+O(q2).
The restriction q s 0·404 will be satisfied when h/I lies in the range of practical values
(and c ~ cd. When the loading is over the whole of the beam (c = I), for example, the
restriction q S 0·404 merely requires h/I S 0·83.

As discussed previously we can associate an admissible velocity field with the statically
admissible stress fields of Fig. 2. The hinge region in which plastic deformation takes
place is bounded by the 45° lines y = ± x through O. The rest of the beam remains rigid
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and performs rigid rotations of amount n about O. Within the hinge, the velocity com­
ponents (u, v) are given by

{
-nx, y> 0

u(x, y) =
nx, y < 0,

{
ny, y > 0

v(x, y) =
-ny, y < o.

(2.14)

This velocity field satisfies the incompressibility requirement, is continuous across the
rigid-plastic boundaries y = ±x, and the directions of maximum shear strain-rate are
along 45° lines in the x- and y-plane which coincide with the directions of maximum shear
stress for the stress fields of regions I and II. Since, in addition, the shear stress and shear
strain-rate have the same sign, the flow rule for the yield condition (2.1) is satisfied and our
solution is therefore complete for q :s; 0-404 and c 2:: c l' The value (2.5) is therefore the
exact value of the collapse pressure.

We remark that the beam theory with the moment yield condition IMI :s; M0 = h2/4
(0" 0 = 1) gives the collapse pressure q = h21[2c(21- c)]. Equation (2.6) shows that the
exact value of the collapse pressure determined from the complete solution is always
greater than the beam theory value for the range c 2:: C1 although they approach each
other as hll goes to zero. Figure 3 illustrates the difference in the beam theory and exact
values of collapse pressure as a function of clh for a beam whose thickness to span ratio
hl21 is one-tenth. The collapse pressure given by (2.5) is valid for clh 2:: cdh = 0-499 when
hl21 = 1/10.

ILl
I/)

~ 4
n:
u
~ 3

0.02 0.05 0.10 0.20 0.50 1.0 20 5.0

c/h

FIG. 3. Percentage increase of the exact value of the collapse pressure over the beam theory value for
loading over a central strip (h121 = 1110).

3. LOCALIZED LOADING OF A BEAM IN PLANE STRAIN

In this section we develop complete solutions for localized pressure loading, that is
clh < 1/2 approximately, where 2c is again the width of the central strip over which the
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uniform pressure q is applied. We shall see that three types of solution are sufficient to
describe the beam behavior when c/h < 1/2, and the complete solutions developed illustrate
the sharp transition from failure in bending to local plastic flow at the Prandtl value
(1 +n/2)(J0 of the applied pressure.

When c/h is not too small, the various stress regions are as indicated in Fig. 4. The
regions are separated by stress discontinuities along the curves y = f(x) and y = g(x) and
the straight lines AC and CF. The line CA is inclined at an angle (n/4-y) to the horizontal
while ACF is a right angle. The y-axis is again taken at the axis of symmetry while the
position of the x-axis will be fixed by the requirement of no net axial force on x = O. In
region BAC directly under the applied load we take the stress field (Jx = -1-q, (Jy = -q,
rXY = 0 (with (Jo = 1) while in region COF we take (Jx = -1-r, (Jy = -r, rxy = O. The
slip-lines for these fully plastic fields are inclined at 45° to the x- and y-axes as shown in
Fig. 4. Region ACFE is a fully plastic constant state region while DAE is a centered fan

Bf-Ir.~~'mn-T-----------r,-L-

,G
\,

\,
\ ,,

'" t(xl_------ 0
, F ---_____________~__----- E

FIG. 4. Development of slip-line field for a beam under localized loading with 2y = 14° and hl2l = 1/10.

region with fan angle 2y and DA inclined at 135° to the x-axis. In the region to the right
of AD for y ~ f(x) we have (Jx = -1, (Jy = rxy = 0 while for y :5; g(x) we take the axial
tensile field (Jx = 1, (Jy = rxy = O. In the central region bounded by y = f(x) and y = g(x)
and to the left of DN we take the equilibrium stress field

(Jx = -s(y), r xy = r(x), (Jy = - yr'(x) + (J(x) (3.1 )

where now (Jx is taken to be non-zero in case high values of shear r(x) occur in this region.
In the central region to the right of DN (Jx is gradually reduced to zero in order to satisfy
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(3.2)

(3.3)

(3.4)

the condition of zero normal stress on x = I. Equilibrium across AC and CF is satisfied if

q = 2')'+ sin 2')'

r = 2')'-sin 2')'

and the stress field in ACFE is then given by

ax = -x = -~-2')'-1cos4')'

ay = - y = -1-2')'+~cos4')'

r xy = T = hin 4')' .

Overall equilibrium of the right half x 2: 0 of the beam must be satisfied. From the
requirement of no net axial force we obtain

(1 +q)c tan(tn- ')')+(1 +r)d = h-c tan(tn- ')')-d

while moment equilibrium about 0 gives

(1 +q)c tan(tn- ')')[d +1c tan(tn- ')')]

+1(1 +r)d2 +1[h- c tan(tn - ')')_d]2 +1qc2 = qcl. (3.5)

From (3.4) and (3.5) we get, on eliminating d,

c2 [(2 + r)q - (2 + q)(q - r) tan2(tn - ')')]

-2c[(2+r)ql-(q-r)h tan(tn-')')]+h2(1 +r) = O. (3.6)

Equations (3.2) and (3.6) are sufficient to determine the dependence of the collapse pressure
q on c since a choice of')' determines q and r in (3.2) and then (3.6) can be solved to determine
clh for a given thickness to span ratio h12/. For small values of')' we can simplify (3.6). To
order ')'3 we see from (3.2) that r = 0 and q = 4')', and substitution of these values into (3.6)
leads to the following expression for q,

(3.7)

which expresses the dependence of q on hll as hll goes to zero for fixed values of hlc. To
order h3/P the value q given by (3.7) agrees with the value (2.6) when clh = 1/2.

The stress fields developed for the fully plastic regions of the beam can be extended
throughout the beam in much the same fashion as in Section 2. In fact if we take s(y) = 0
in (3.1) then (2.7H2.9) apply with q replaced by r in the analysis and equations (2.10) and
(2.11) again apply with X, Yand T given by (3.3) and where al and a2 are now the distances
of the points F and E from the y-axis. In this fashion we determined the position of the
curves y = f(x) and y = g(x) up to x = a2 for the case when the fan angle 2')' equaled 14°
and the thickness to span ratio hl21 was 1/10 so that from (3.2) and (3.6) we have q = 0·486,
r = 0·002 and clh = 0·112. The curves y = f(x) and y = g(x) are shown to scale in Fig. 4.
The positions of the curves were also determined for x ~ a2 through the fan region by
numerical integration of the differential equations expressing equilibrium over y = f(x)
and y = g(x)--the determination of the positions of the curves of stress discontinuity to
the right of section DN is straightforward (see (2.12)). It was found that the yield condition
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(2.1) was not violated in the central region for the selection s(y) = 0 in (3.1) with 2y = 14°
and h/21 = 1/10. The stress fields developed here are therefore statically admissible.

We can associate a velocity field directly with the stress field discussed for the localized
loading in question. Referring again to Fig. 4 we assume a deformation symmetric about
x = 0 in which plastic deformation is confined to the region between x = 0 and the
()(-lines through 0, OGHKL in the upper part of the beam and OM in the lower part of
the beam. The rigid portion of the beam rotates counterclockwise about 0 with angular
velocity O. In the lower part of the plastic hinge the velocity components (u, u) referred to
the x- and y-axes are given for y < 0 by (2.14). In the upper part of the hinge the determina­
tion of the velocity field is straightforward using u = 0 on OB as well as the known normal
velocity on OGHKL. In fact, the field in the upper part of the hinge consists of the rigid
motion u = -Oy, u = Ox with a superposed deformation mode determined by u = Oy
on x = 0 and up = 0 on OGHKL, where we now take U a and up to be the velocity compo­
nents directed along the C(- and fJ-lines. Since the rate of extension along a stress discontin­
uity is zero, for the deformation mode the velocity component directed along GC is zero
while the velocity component directed along CA is Od sec(n/4 -I'). With these boundary
conditions we can determine the velocity field in region OGC by the method used by Lee
for determining velocity fields for an acute angled wedge with the normal velocity prescribed
on one face [8]. The velocities on CG then determine the field in the triangular region
bounded by CG, the a-line through C, and the fJ-line through G, region GCQ of Fig. 4.
This field can then be extended to the region bounded by GQ and the ()(-lines QN and
GHKL since U a is known on QG while up = 0 on GHKL. Finally, the velocity field can
be extended into regions CNA and ABC.

In this fashion we can demonstrate the existence of an admissible velocity field which
satisfies the incompressibility condition as well as the requirement that the maximum
shear strain-rate and the maximum shear stress agree in direction and sign. Our solution
is therefore a complete solution and the value of the collapse pressure given by (3.2) and
(3.6) is the exact value provided the stress field in the central region does not violate the
yield condition. From the work of Anderson and Shield [6J in which very close lower and
upper bounds were developed on the collapse pressure for highly localized loading, there
seems little doubt that s(y) in (3.1) can be selected so that this requirement is met. The
form of complete solution described here applies until c is so small that points Hand G
of Fig. 4 coincide which occurs when c = c2 , where

_ lJ2dsin y cos(n/4-y)
C2 - 2 2'

cos Y
(3.8)

As before, the exact value of the collapse pressure given by the complete solution and
approximated by (3.7) is always greater than the value furnished by beam theory, although
the values approach each other as h/l goes to zero for fixed values of c/h. The variation
with c/h of the difference between the beam theory value and the exact value for the range
cdh ~ c/h ~ C2/h is included in Fig. 3 for a beam with h/21 = 1/10; in this case c2/h = 0·061
while cdh = 0·499 from Section 2.

Complete solutions can also be developed for more concentrated loading, c S c2 '

although the associated slip-line fields for the plastically deforming regions can no longer
be pieced together from the simple fields used previously and we must resort to numerical
or graphical techniques. Figure 5 illustrates the development of the slip-line field under
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H

FIG. 5. Development of slip-line field for a beam under localized loading with 2y = 45° and hl2l = 1/10.

the loaded portion of the beam. The lines AC and CE are again stress discontinuities with
AC inclined at an angle n/4 - ')I to the horizontal while angle ACE is a right angle. In region
BAC we take the stress field ax = -1-q, ay = -q, 'xy = 0 while in region CED we take
(Jx = -1-r, (Jy = -r, 'xy = O. Region ACE is a fully plastic constant state region and
AE and AH define a fan region with fan angle 2')1 and AH inclined at 135° to the horizontal.
To the right of AH we again take the compressive field ax = -1,ay = 'xy = O. Equilibrium
is satisfied across the lines AC and CE when rand q are given by (3.2) and the field in region
ACE is again given by (3.3).

The slip-line field for region DEFGO as well as the position of the stress discontinuity
EFG are determined by the a-line DE, the condition that the slip-lines meet the axis OD
at 45° and the equilibrium jump conditions across EFG. Denoting by e the inclination
of an a-line to the x-axis and setting p = -((Jx+(Jy)/2, equilibrium requires, in the con­
tinuous portion of the field,

p+e= const. on an IX-line

p - e= const. on a jJ-line,
(3.9)

remembering that we have taken 0'0 = 1. At the discontinuity EFG, the IX-lines must be
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equally inclined to EFG and also

(3.10)

where subscripts designate values on either side of EFG (see [1, 2J, for example). From the
known values p = 1/2 + r, e= n/4 on DE, the known stress field in the fan above EFG
and the condition e= n/4 on OD, the field can be determined numerically from (3.9),
(3.10) in the regions DEF, DFJ, FGOJ in turn. Since DE is straight, the a-lines in DEF are
straight lines. Below 0 the tensile field (Jx = 1, (Jy = ! xy = 0 applies and the slip-line OG
must be such that the right half of the beam is in overall equilibrium. In practice, a trial
origin 0 is chosen and the trial beam thickness h is then fixed by the condition of zero
axial force across x = O. For a given thickness to span ratio the total moment on the
right half of the beam can be found. Adjustment of the location of 0 is then made to reduce
this moment to zero. Figure 5 shows numerical results for a beam with h/21 = 1/10. The
angle of the fan in Fig. 5 is 2')1 = 45° and it was found that q = 1-49 and c/h = 0·035. Again
it is anticipated in view of the results of [6J that the stress fields in the upper and lower
portions of the beam can be continued throughout the beam without violating the yield
condition.

For the velocity field, plastic deformation is confined to the hinge with lower part a
right-angled triangle as before and upper part bounded by the a-line OGH and its straight
continuation and the reflection of this line in the y-axis. The velocity field in the lower
part of the hinge is given by (2.14) while in the upper part the velocity field is determined
from the condition u = 0 on x = 0 and the known normal velocity on OGH (extended),
with the subsidiary requirements that AC and CEFG are extensionless.

The bending type solutions described here apply up to the value 2')1 = n/2 when the
discontinuities AC and CE disappear and the well-known Prandtl field is obtained in
the vicinity of the loaded region. Any of the velocity fields associated with the Prandtl-Hill
solution for the indentation of a half-space by a flat-ended punch then apply (see [1, 2J,
for example) and q = 1+n/2 is an upper bound on the collapse pressure for all smaller
values of c/h. The Prandtl value can be shown to be a lower bound also by extending the
Prandtl field in the manner used by Shield [9J in constructing lower bounds for the punch
problem, with suitable modifications to satisfy the boundary conditions on the lower
surface and ends of the beam. Thus, complete solutions can be developed for all values
of c/h in the full range 0 < c/h :::; l/h.

The percentage difference between the beam theory value of the collapse pressure and
the value given by the exact theory for h/21 = 1/10 is included in Fig. 3 for c/h :::; c2/h,
values of 30°, 45° and 60° for 2')1 being used in the computation. The sudden drop in the
curve is due to the sharp transition from beam behavior to local flow at the Prandtl value
of the applied pressure, the beam theory predicting a collapse pressure increasing without
bound as c/h tends to zero.

4. THE INFLUENCE OF AXIAL FORCE

The results of the previous two sections can be extended to take into account a dis­
tribution of axial force over the ends x = ± I of the beam, as shown in Fig. 6. Here the
beam is loaded uniformly over a central strip of width 2c, and the load is supported by a
uniform distribution ofshear on the ends, but other forms of shear distribution and other
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FIG. 6. Simply supported beam loaded by a central strip of uniform pressure with axial force.
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pressure loadings can be considered. Following the development of Section 2 we divide
the beam of Fig. 6 into regions I-Vas before separated by the lines of stress discontinuity
shown as broken lines. The stress fields in regions I, IV and V above y = f(x) and the
field in region II below y = g(x) are the same as those described in Section 2 for the beam
of Fig. 2. In the transition region, region III, we take the field (3.1) where s(y) is now the
known distribution of normal stress on x = ± 1.

We denote by N the resultant normal force on an end and by y* the distance of its
line of action from the lower surface, which is taken to be the x-axis. Thus we have

N = f: s(y) dy, Ny* = f: ys(y) dy.

(4.1)

From overall equilibrium of the portion x ~ 0 of the beam we have

b-(h-b)(1 +q) = N

(l+q)(h 2 -b2 )-b2 +2Ny*+qc2 = 2qcl

and these equations determine the collapse value of the pressure q and the position of 0
(see Fig. 6). The determination of the stress discontinuities y = f(x) and y = g(x) can be
carried out as in Section 2 and again, for conventional beams, the stress field in region III
will not violate the yield condition for a wide range of axial force distributions s(y).

A velocity field can be associated with the stress fields described here in which the
beam rotates rigidly about 0 with plastic deformation confined to a yield hinge centered
at 0 and bounded by 45° lines through O. This velocity field provides complete solutions
with the exact value of the collapse pressure given by (4.1) up to the value of c such that
points 0 and 0 of Fig. 6 coincide. For more concentrated loads we can modify the solutions
of Section 3 to accommodate the normal force on the ends and thus complete solutions
can be developed for all values of c in the full range 0 < c/h ::;; l/h. The solutions will, of
course, again exhibit a sharp transition from failure in bending to local flow at the Prandtl
value of the collapse pressure.

5. BENDING OF SIMPLY SUPPORTED BEAMS IN PLANE STRESS

The method of solution of Sections 2 and 4 can be adapted with slight modification
to bending of simply supported beams in plane stress but where the material of the beam
now obeys the von Mises yield condition. Since the construction of stress and velocity
fields is very similar to the previous work we shall only consider in detail the problem of
bending of simply supported beams under uniform surface load with uniform shear and



948 C. A. ANDERSON and R. T. SHIELD

zero normal stress on the ends x = ± I of the beam. This problem has been treated pre­
viously and bounds on the exact value of the collapse pressure were obtained by use of
limit analysis [5]. Here we shall give a complete solution.

q

A
r----.,..,-h-r-<p----"'---''--J-.L-_-__..L_-_-~----'--'-----_~_~-~

::---;-i n ill ~ qi,
'P, -----____ ~ h

II ----___ ~

--- fa

FIG. 7. Simply supported beam in plane stress under uniform surface load.

Referring to Fig. 7, we divide the beam into regions separated by straight lines from 0
to the corners of the beam, OA and OB, as shown. In regions I, II and III we take the
constant stress fields

Region I: ax = -).-q, a y = -q, Txy = 0

Region II: ax = 1, a y = T XY = 0

Region III: ax = 0, a y = a, Txy = T

(5.1)

where we have again taken a0 = 1, a 0 being the yield stress in simple tension. These
equilibrium stress fields satisfy the boundary conditions of the problem. The constant ),
in (5.1) is chosen so that the von Mises yield condition (with a z = Txz = Tyz = 0, ao = I)
is satisfied in region I, that is

(5.2)

and we find that

(5.3)

The values of T, a, q and the distance of 0 from the upper surface of the beam are
determined from the equilibrium requirements across OA and OB and we find that 0 is
fixed at a distance h/(l +A+q) below the upper surface, while T = ql/h, a = _q2 12/h 2 and
q is given by

(5.4)

Expanding the square root in (5.4) and then expanding q in a power series in h2/F gives

(5.5)

as the collapse value of q. Using the values of T and a together with (5.4) then gives q = 0·56
as the maximum value of q for which the stress field (5.1) does not violate the von Mises
yield condition in region III. For q = 0'56, h/21 has the value 0·51.
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A velocity field can be associated directly with the statically admissible stress field (5.1).
The velocity field involves a yield hinge centered at point 0 of Fig. 7 in which plastic
deformation takes place while the rest of the beam remains rigid and performs rigid body
rotations of amount 0 about O. With x- and y-axes taken through 0 as shown, the hinge
is bounded for y ;;::: 0 by intersecting lines inclined at an angle q>1 to the x-axis and for
y ::;;; 0 by intersecting lines inclined at an angle q>2 to the y-axis, where the angles q> 1and q>2

are defined by

[
2A+qJI /2

tanq>1 = -- ,
A-q

(5.6)
{

[
A-q J1 /2
2A.+q Oy, y > 0

v(x, y) =

-!.j20y, y < o.

The angles q>1 and q>2 also define the inclination to the horizontal of the characteristics
of the velocity equations in the two parts of the hinge. The velocity components (u, v)
within the hinge are given by

{

[
2A+qJI/2

- -- Ox, y>O
A-q

u(x, y) =

.j20x, y < 0,

The velocity field (5.6) is continuous across the rigid-plastic boundary and is related to
the stress fields in regions I and II through the flow rule. Thus for hl21 < 0·51 our solution
is complete and the value of the collapse pressure determined by (5.4) is the exact value.

As in the case of plane strain, complete solutions can be derived when the applied
load is uniformly distributed over a central width 2c and also for the case when axial
force is present. However, for values of p = -!(ux+uy) such that p2 > U& the equations
describing the plane stress problem with the von Mises yield condition change character
from hyperbolic type to elliptic type [10]. Thus for small values of clh the method of
approach of this section does not provide complete solutions.
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Resume-Une methode d'approche est developpee pour etablir des solutions completes pour des poutres recto
angulaires a support simple composees d'un materiau parfaitement plastique-rigide SOUS l'effet d'une charge
superficielle distribuee. Des solutions detaillees sont donnees pour une charge appliquee a une bande centrale
dans une deformation en plan, et les solutions font ressortir une transition nette entre la rupture a la flexion et
la rupture de fluage pour la valeur Prandtl de la pression appliquee. L'influence de la force axiale est discutee et
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quelques solutions completes sont developpees pour la flexion de poutres asupport simple dans une deformation
en plan. Des comparaisons sont faites portant sur les valeurs exactes de la pression de rupture et les valeurs
donnees par la theorie des poutres.

ZusammenfllSSUDg-Eine Methode wird entwickelt zur vollstandigen Losung einfach gesttitzter rechtwinkliger
Trager aus idealplastischem Material unter der Einwirkung verteilter Oberflachenbelastungen. Detailierte
Losungen werden gegeben flir Belastungen tiber ein Mittelband in Planbelastung. Die Losungen haben einen
scharfen Obergang von Verformung durch Biegung zu Verformung durch lokales Kriechen bei dem Prandtl'­
schen Wert des Druckes. Der Einfluss der Axialkraft wird behandelt, und vollstandige Losungen werden entwick­
eIt ftir die Biegung einfach gesttitzter Trager in Planbelastung. Vergleiche zwischen den genauer Werten des
Zerstorungsdruckes und der Werte der Tragertheorie werden gemacht.

AOCTpaKT-PaCCY)I(,llaeTCJI MeTO,ll orrpe,lleJIeHHJlrrOllHbIX peweHHIt,llllJl cB06o,llHO orrepTbiX rrpJlMoyrOll1>HbIX

6anoK, rrocTpoeHHbIX H3 Tsep,llOrO H,llean1>HO-lIlIaCTH'IecKoro MaTepHana H HaxO,llJlUUfXCJI rro,ll BlIHJlHHeM

pacrrpe,llelleHHolt rrosepxHocTHolt Harpy3KH. npHBO,llHTCJI ,lleTallbHbIe peweHHll ,lllIJI ClIY'!aJI Harpy3KH

ueHTpallbHolt rrOllOCbl, KOTOpaJl HaXO,llHTCJI B rrllOCKOM ,llecjlopMHpOBaHHOM COCTOJlHHH. PeweHHJlrroKa3YlOT

BHe3arrHbIIt rrepexo,ll OT pa3pyweHHJI rrpH H3rH6e K pa3pyweHHIO rrpH 1I0KanbHOM lIlIaCTH'IecKOM Te'leHHH.

3TO lIlIaCTH'IecKoe Te'leHHe orrpe,llellJleTCJI 3Ha'leHHeM npaH,llTliJI ,lllIJI rrpHllO)l(eHHolt Harpy3KH. I1cclIe­

,llyeTcJI BlIHJlHHe OceBblX CHli. npHBO,llJlTCH HeKoTopbIe rrOllHbIe peweHHJI ,lllIJI clIY'!aJl H3rH6a CBo6o,llHO

orrepTbix 6anoK B IIlIOCKOM HarrpJl)l(eHHOM COCTOJIHHH. CpaBHHBaIOTCH TO'lHbIe 3Ha'leHHJlrrpH pa3pyweHHH

,llaBlleHHeM, co 3Ha'leHHlIMH ,llaHHbIMH H3 TeopHH 6anoK.


